A Generalized Pyramid Matching Kernel for Human Action Recognition in Realistic Videos

نویسندگان

  • Jun Zhu
  • Quan Zhou
  • Weijia Zou
  • Rui Zhang
  • Wenjun Zhang
چکیده

Human action recognition is an increasingly important research topic in the fields of video sensing, analysis and understanding. Caused by unconstrained sensing conditions, there exist large intra-class variations and inter-class ambiguities in realistic videos, which hinder the improvement of recognition performance for recent vision-based action recognition systems. In this paper, we propose a generalized pyramid matching kernel (GPMK) for recognizing human actions in realistic videos, based on a multi-channel "bag of words" representation constructed from local spatial-temporal features of video clips. As an extension to the spatial-temporal pyramid matching (STPM) kernel, the GPMK leverages heterogeneous visual cues in multiple feature descriptor types and spatial-temporal grid granularity levels, to build a valid similarity metric between two video clips for kernel-based classification. Instead of the predefined and fixed weights used in STPM, we present a simple, yet effective, method to compute adaptive channel weights of GPMK based on the kernel target alignment from training data. It incorporates prior knowledge and the data-driven information of different channels in a principled way. The experimental results on three challenging video datasets (i.e., Hollywood2, Youtube and HMDB51) validate the superiority of our GPMK w.r.t. the traditional STPM kernel for realistic human action recognition and outperform the state-of-the-art results in the literature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel Spatial Pyramid Match Kernel Algorithm for Object Recognition using a Cluster of Computers

This paper parallelizes the spatial pyramid match kernel (SPK) implementation. SPK is one of the most usable kernel methods, along with support vector machine classifier, with high accuracy in object recognition. MATLAB parallel computing toolbox has been used to parallelize SPK. In this implementation, MATLAB Message Passing Interface (MPI) functions and features included in the toolbox help u...

متن کامل

Human Action Recognition Using Pyramid Vocabulary Tree

The bag-of-visual-words (BOVW) approaches are widely used in human action recognition. Usually, large vocabulary size of the BOVW is more discriminative for inter-class action classification while small one is more robust to noise and thus tolerant to the intra-class invariance. In this pape, we propose a pyramid vocabulary tree to model local spatio-temporal features, which can characterize th...

متن کامل

Approximate Correspondences in High Dimensions

Pyramid intersection is an efficient method for computing an approximate partial matching between two sets of feature vectors. We introduce a novel pyramid embedding based on a hierarchy of non-uniformly shaped bins that takes advantage of the underlying structure of the feature space and remains accurate even for sets with high-dimensional feature vectors. The matching similarity is computed i...

متن کامل

The Pyramid Match Kernel: Efficient Learning with Sets of Features

In numerous domains it is useful to represent a single example by the set of the local features or parts that comprise it. However, this representation poses a challenge to many conventional machine learning techniques, since sets may vary in cardinality and elements lack a meaningful ordering. Kernel methods can learn complex functions, but a kernel over unordered set inputs must somehow solve...

متن کامل

Recognizing in the depth: Selective 3D Spatial Pyramid Matching Kernel for object and scene categorization

This paper proposes a novel approach to recognize object and scene categories in depth images. We introduce a Bag of Words (BoW) representation in 3D, the Selective 3D Spatial Pyramid Matching Kernel (3DSPMK). It starts quantizing 3D local descriptors, computed from point clouds, to build a vocabulary of 3D visual words. This codebook is used to build the 3DSPMK, which starts partitioning a wor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2013